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Abstract

Models of non-linear systems frequently introduce forces with bounded continuity resulting in non-
smooth (even discontinuous) flow. Examples include systems with clearances, backlash, friction, and
impulses. Asymptotic methods require smooth (differentiable) flow and are therefore ill-suited for
analyzing non-smooth systems. In these cases, the traditional harmonic balance method may be used to
obtain approximate periodic solutions, but the method suffers from extremely slow convergence in general.
Generalizations of the traditional harmonic balance method are introduced in this paper that result in
superior convergence rates and superior modes of convergence. These improvements derive from the
introduction of one or more expansion functions that possesses the same degree of continuity as the exact
solution. In particular, forming an infinite series of such functions results in an expansion in the same
function space of the exact solution. This expansion converges pointwise to the exact solution and to all
derivatives thereof. These improvements are illustrated by example upon re-evaluating a classical single
degree-of-freedom model for friction-induced vibration.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Non-linear behavior is pervasive in mechanical systems and may arise from forces contributing
to system stiffness, damping, and inertia. While many classes of non-linearities are described in
the literature [1], a distinction that is central to this paper is that between smooth versus non-
smooth non-linearities; see, for example, Refs. [2–4]. A non-linearity will be considered smooth if
it is a continuous function of the displacement field and all derivatives thereof. Examples of
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smooth non-linearities include most material non-linearities and geometric non-linearities
describing large amplitude motions. By contrast, non-smooth non-linearities produce forces that
have bounded continuity and are therefore discontinuous functions of a derivative of the
displacement field. Examples of non-smooth non-linearities include dry friction, impact, and ideal
elastic–plastic material response.

The differentiability of smooth non-linearities renders them amenable to asymptotic methods
including perturbation and averaging methods [1,5]. By contrast, the non-differentiability of non-
smooth non-linearities requires specialized methods of analysis. For instance, Pilipchuk [2,3]
developed a novel non-smooth transformation for periodic motions using a pair of saw-tooth sine
and rectangular cosine functions. The transformation eliminates discontinuities and leads to a
smooth system that can be then evaluated using asymptotic methods. Similarly, Liu [6]
decomposes a discontinuous periodic solution xðtÞ ¼ x1ðtÞ þ Hðt � aÞx2ðtÞ into two smooth
components x1ðtÞ and x2ðtÞ that are separated by a discontinuity at time t ¼ a: Doing so permits
the subsequent use of perturbation methods for the solution of the components x1ðtÞ and x2ðtÞ:
Here, Hðt � aÞ is the Heaviside function for a discontinuity at t ¼ a:

Alternatively, one may also apply the harmonic balance method as the means to compute
approximate periodic motions for systems with non-smooth non-linearities. In traditional
harmonic balance [7], one constructs an approximate solution as a Fourier series of harmonic
functions to represent a periodic response. The harmonic functions are infinitely differentiable.1

For systems with non-smooth non-linearities, a periodic motion will, in general, have bounded
continuity. For instance, for a system with dry friction, a periodic motion that includes the stick–
slip transition will be continuous in both displacement and velocity, yet discontinuous in
acceleration (a C1 function). Thus, the exact solution will not lie in the function space spanned by
the terms of the harmonic balance series (the space of CN functions). Moreover, the harmonic
balance series for the acceleration will only converge in a mean square sense to the exact solution
and not pointwise. In addition, the discontinuities in the acceleration will generate oscillations in
the harmonic balance solution as a result of the Gibbs phenomenon [8]. The Gibbs phenomenon
reduces the convergence rate to order Oð1Þ in the neighborhood of the discontinuity [9]. These
effects conspire to produce extremely slow convergence for the harmonic balance series for non-
smooth dynamical systems.

The slow convergence of a harmonic balance solution for initial-value problems is analogous to
the slow convergence of Ritz series observed in certain boundary-value problems. For instance,
eigenvalue problems in linear structural dynamics can lead to non-smooth eigensolutions (in
space) as a result of forces/moments produced by discrete elements such as springs (linear or
rotational) [10], attached masses [11], cracks [12], etc. For example, the slow convergence of a Ritz
series was noted in Ref. [10] for the case of a simply supported Euler–Bernoulli beam with a
rotational spring in the interior. Accelerated convergence was achieved by adding the so-called
forced modes to the Ritz series. Though not mentioned in Ref. [10], the first forced mode employed
therein lies in the function space of the exact solution (a beam with an internal rotational spring
will have mode shapes that are C1 in general as the spring produces a discontinuity in the internal

1Let Cn denote the space of functions possessing continuous derivatives through order n: Thus, the harmonic

functions are elements of CN:
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moment). It is this first forced mode term that significantly improves the convergence rate of the
Ritz series.2

The purpose of this paper is to introduce generalizations of the harmonic balance (or Galerkin
method) that accelerate convergence relative to traditional harmonic balance for non-smooth
dynamical systems. The methods are developed herein using the example of a single degree-
of-freedom (d.o.f.) oscillator that exhibits stick–slip response due to dry friction. This model is
presented in Section 2. In Section 3, we develop three approximations to the periodic motion of
this oscillator using traditional harmonic balance and then two generalizations of this method
that incorporate one or more C1 functions. The exact periodic solution to this non-smooth
system is critically compared with the approximate solutions in Section 4. Conclusions regard-
ing the convergence rate and convergence modes of all series are highlighted by this simple
example.

2. Non-smooth stick–slip model

The schematic in Fig. 1. illustrates a classical single d.o.f. model used to describe friction-
induced vibrations [13]. The particle, in contact with the moving belt, experiences self-sustained
stick–slip vibrations induced by dry friction. Such friction-induced vibrations arise in many
applications including, for example, brake squeal, machine tool chatter, bowed string instruments,
drying windshield wiper blades, etc; refer to reviews [14–16]. For instance, the oscillator in Fig. 1
may represent the first mode of a violin string for which the drawn bow is represented by the belt
travelling with constant speed V :

A Coulomb friction law will be adopted for this model that incorporates classical static ms and
kinetic mk friction coefficients; see Fig. 1(b). The equation of motion for this oscillator is given by

.x þ o2
nx ¼

Ff ðVrÞ
M

; ð1Þ

V

x (t)
µs, µk

Vr

µk

µs

-µs

-µk

M

K

Ff / FN

(a)

(b)

Fig. 1. (a) Classical single d.o.f. model for friction-induced vibration. (b) Coulomb friction law.

2 It is curious that additional forced mode terms are also considered in Ref. [10] that have increasingly greater degrees

of continuity and therefore do not lie in the function space of the exact solution. These additional terms have far less

influence in the convergence rate relative to the first forced mode term as seen in the results in Ref. [10].
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where on ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
K=M

p
denotes the natural frequency of the system. The friction force in Eq. (1) is

specified as

Ff ¼
Kx for Vr ¼ 0 and jKxjpmsFN -stick;

�mkFN signðVrÞ forVra0 -slip;

(
ð2Þ

where FN is the normal force and Vr ¼ ð ’x � V Þ represents the relative velocity between the
particle and the belt. The dynamics of this simple model has been extensively investigated; see, for
instance, Refs. [13,15–18].

The sustained (friction-induced) vibration develops as follows. When ’x equals V ; the particle
sticks to the belt and is displaced ultimately to the static friction limit jKxj ¼ msFN : At this limit,
the particle begins to slide back to the neutral position. During the slip period, energy is dissipated
due to the non-conservative work by friction. If the energy input during the sticking phase
balances the energy dissipation during the sliding phase, a distinctive non-smooth periodic motion
(limit cycle) results as illustrated in Fig. 2. Note that this periodic solution may be readily deduced
using initial conditions ðx0; ’x0Þ satisfying jx0jpmsFN=K and ’x0 ¼ V : Thus, the stick form ð ’x ¼ V Þ
of the equation of motion governs first. The slip form of the equation of motion governs second
starting at the transition jKxj ¼ msFN : Since the displacement and velocity of the particle are
continuous, these continuity conditions are applied as matching conditions between the stick and
slip motions in arriving at the exact solution.

Fig. 2(a) shows the limit cycle in the phase plane consisting of the stick phase ’x ¼ V ðA-BÞ
followed by the slip phase ðB-AÞ: The particle oscillates about the position xs ¼ mkFN=K with
period T as shown in Fig. 2(b). The corresponding particle velocity and acceleration are shown in
Fig. 2(c) and (d) respectively. Since the speed of the particle remains less than or equal to V during
the limit cycle, the friction force always acts in the direction of the belt velocity. Note that the
displacement is continuous and smooth, the velocity is continuous but not smooth, and
consequently the acceleration is discontinuous. The discontinuities in the acceleration occur at the
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Fig. 2. Self-sustained oscillations: (a) limit cycle in phase plane, (b) corresponding displacement, (c) velocity, and (d)

acceleration.
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transition times between stick and slip as dictated by the discontinuous friction force (2).
Inspection of Eq. (2) readily demonstrates that the exact solution xðtÞAC1:

3. Harmonic balance/Galerkin method

Approximate solutions of Eq. (1) are now sought by using the harmonic balance or the
Galerkin method [7]. Note that the term ‘‘Galerkin method’’ is most frequently associated with
approximate solutions of boundary-value problems, while the term ‘‘harmonic balance’’ is most
frequently associated with approximate periodic solutions of initial-value problems. However, the
two methods represent the same strategy as they require the residual to be orthogonal to the
expansion functions [7]. Hence, these terms will be used interchangeablely in this paper.

We shall now construct approximate periodic solutions to Eq. (1) using three variations of the
harmonic balance/Galerkin method for this initial-value problem. We begin with the classical
form of the harmonic balance method wherein the expansion functions are harmonics and are
therefore CN: We shall then re-solve this problem upon adding a single (non-harmonic) expansion
function that is C1 to the classical harmonic series. Finally, we shall construct an expansion using
entirely C1 (non-harmonic) functions. The results of these three approximate series solutions will
be critically compared in Section 4.

3.1. Classical harmonic balance (Fourier series)

The classical harmonic balance method begins by assuming a Fourier series expansion for
periodic xðtÞ given by

xðtÞ ¼
a0

2
þ

XN

n¼1

½an sinðno0tÞ þ bn cosðno0tÞ�: ð3Þ

The unknown quantities consist of the fundamental frequency o0 which relates to the period T ;
the stick-to-slip transition time t1; and the 2N þ 1 Fourier coefficients a0; an; bn; n ¼ 1; 2;y; N:
Substitution of Eq. (3) into Eq. (1) results in a solution error or residual R1ðtÞ given by

R1ðtÞ ¼
o2

na0

2
þ

XN

n¼1

½o2
n � ðno0Þ

2� ½an sinðno0tÞ þ bn cosðno0tÞ� �
Ff

M
: ð4Þ

The Galerkin method requires that the residual R1 be orthogonal to each expansion function over
one (unknown) period T ¼ 2p=o0: Thus, the 2N þ 1 Fourier coefficients are found from the
2N þ 1 (harmonic balance) orthogonality conditions

/R1ðtÞ; 1S ¼ 0; ð5Þ

/R1ðtÞ; sinðjo0tÞS ¼ 0; j ¼ 1;?;N; ð6Þ

/R1ðtÞ; cosðjo0tÞS ¼ 0; j ¼ 1;?;N; ð7Þ
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where the inner product /aðtÞ; bðtÞS of two functions aðtÞ and bðtÞ is defined as

/aðtÞ; bðtÞS ¼
Z t1

0

aðtÞbðtÞ dt þ
Z T

t1

aðtÞbðtÞ dt: ð8Þ

We now introduce the initial conditions ðx0; ’x0Þ that provide the two additional equations

xð0Þ ¼
a0

2
þ
XN

n¼1

bn ¼ x0; ð9Þ

’xð0Þ ¼
XN

n¼1

ðno0Þan ¼ ’x0: ð10Þ

Eqs. (5)–(7), (9), and (10) provide 2N þ 3 non-linear algebraic equations for 2N þ 3 unknowns;
namely, the unknown transition time t1; the period T (¼ 2p=o0), and the Fourier coefficients
a0; an; bn; n ¼ 1; 2;y; N: Solutions for these 2N þ 3 coupled equations are found numerically
using multi-dimensional Newton–Raphson.

3.2. Classical harmonic balance with one C1 term

The classical harmonic balance solution above employs harmonic functions that are necessarily
CN: This is at odds with the exact solution that is known (by inspecting of Eq. (1) above) to be C1:
Consequently, the classical harmonic balance series cannot converge pointwise to .x and, in fact,
converges only in the mean-square sense (L2 norm). The resulting series converges slowly as will
be seen in Section 4.

To accelerate the convergence rate, one additional term is added to Eq. (3) akin to the ‘‘forced
modes’’ introduced in Ref. [10] for a linear eigenvalue problem. To this end, consider the new
expansion

xðtÞ ¼
a0

2
þ

XN

n¼1

½an sinðno0tÞ þ bn cosðno0tÞ� þ c1g1ðtÞ ð11Þ

where c1 is one additional undetermined coefficient. Here, g1ðtÞ is a function in the C1 function
space of the exact solution as given, for example, by

g1ðtÞ ¼
ðt1 � TÞ3t; 0ptot1

�2Tt3 þ 3Tðt1 þ TÞt2 þ ½2t31 � ðt1 þ TÞ3�t � t21Tðt1 � 3TÞ; t1ptoT :

(
ð12Þ

Note that this function is periodic and C1 as defined by the conditions, g1ð0Þ ¼ g1ðTÞ; ’g1ð0Þ ¼
’g1ðTÞ; g1ðt�1 Þ ¼ g1ðtþ1 Þ; and ’g1ðt�1 Þ ¼ ’g1ðtþ1 Þ:

Substituting Eq. (11) into Eq. (1) leads to a new residual denoted R2ðtÞ given by

R2ðtÞ ¼ R1ðtÞ þ
0; 0ptot1;

c1 .g1ðtÞ þ o2
nc1g1ðtÞ; t1ptoT :

(
ð13Þ
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Here, the additional term in Eq. (11) is cancelled after substituting into Eq. (2) for the stick period
0ptot1 and only makes effects on the responses for the slip period t1ptoT : Also, two times
differention of the additional term is equal to zero for the stick period.

The additional d.o.f. added to the series now requires the additional orthogonality condition

/R2ðtÞ; g1ðtÞS ¼ 0: ð14Þ

The other orthogonality conditions and the initial conditions are exactly analogous to Eqs. (5)–
(7), (9), and (10) upon replacing R1ðtÞ with R2ðtÞ including g1ðtÞ in the expansion. The resulting set
of 2N þ 4 non-linear algebraic equations are again solved using Newton–Raphson.

3.3. C1 expansion

In this section, a new approximate series solution is sought whose terms have precisely the same
degree of continuity as the exact solutions, namely C1: To construct this series, we introduce a
discontinuous polynomial series expansion for the discontinuous acceleration

.xðtÞ ¼ Hðt � t1Þ
XN

n¼0

dnðt � t1Þ
n

" #
ð15Þ

where Hðt � t1Þ is the Heaviside function and t1 is the unknown transition time. Note that for
tot1; .x ¼ 0 and stick is captured exactly. Integrating Eq. (15) twice leads to the required C1 series
expansion for the displacement

xðtÞ ¼ Hðt � t1Þ
XN

n¼0

dn

ðn þ 1Þðn þ 2Þ
ðt � t1Þ

nþ2

" #
þ e0t þ e1; ð16Þ

where e0 and e1 are two constants of integration to be evaluated from the initial conditions.
Before proceeding further, it is worthwhile to discuss how the critical step above can be

generalized to other examples. From the equations of motion, the approximate solution is selected
to possess the same degree of continuity as the exact solution either in space or in time domains.
Moreover, the degree of continuity can be determined by inspection of the equation(s) of motion.
For example, the discontinuity first appears at the second spatial derivative of the displacement
for a simply supported Euler–Bernoulli beam with a rotational spring in the interior [10]. Hence,
the exact eigensolutions lie in C1 space. The approximate eigenfunctions (in space) are then
constructed by first introducing a discontinuity in the second spatial derivative and then
integrating twice to obtain the displacement. This procedure ensures that both approximate and
exact solutions are in the same function space.

This idea can be readily applied to more examples, a few of which are briefly noted here. If a
linear spring is attached to the beam instead of the rotational spring in the previous example, the
eigensolutions are C2 as the spring produces a discontinuity in the internal shear force. When a
discrete mass is attached to the interior of a string, cable, or rod, the eigensolutions are C0 due to
the kink that may develop at the attached mass. If an impact is applied to the simple mass–spring
oscillator, then the displacement is C0 (in time) and the velocity is discontinuous. By first noting
the degree of continuity, the approximate solution can then be constructed in a fashion similar to
that used in the friction oscillator detailed above. We now return to this example.
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Substituting Eq. (16) into Eq. (1) results in the residual R3ðtÞ given by

R3ðtÞ ¼ o2
nðe0t þ e1Þ þ Hðt � t1Þ

XN

n¼0

dnðt � t1Þ
n 1 þ

o2
nðt � t1Þ

2

ðn þ 1Þðn þ 2Þ

� 	( )
�

Ff

M
: ð17Þ

Note that the obtained residual is equal to zero for the stick period since the approximate solution
for 0ptot1 is equal to the exact solution.

The orthogonality conditions now require

R3ðtÞ;
Hðt � t1Þðt � t1Þ

nþ2

ðn þ 1Þðn þ 2Þ

� �
¼ 0; n ¼ 0;y; N: ð18Þ

The integration constants are determined by inspection as e0 ¼ ’x0 and e1 ¼ x0: Note that Eq. (18)
leads N þ 1 coupled equations and the N þ 3 unknowns, t1; T ; and dn; n ¼ 0; 1;y; N: The two
additional equations,

xðtÞ ¼ xðt þ TÞ )
XN

n¼0

dn

ðn þ 1Þðn þ 2Þ
ðT � t1Þ

nþ2

� 	
þ ’x0T ¼ 0; ð19Þ

’xðtÞ ¼ ’xðt þ TÞ )
XN

n¼0

dn

ðn þ 1Þ
ðT � t1Þ

nþ1

� 	
¼ 0; ð20Þ

enforce solution periodicity. The resulting set of N þ 3 equations are again solved by Newton–
Raphson.

4. Results

An example system is studied herein as defined by the parameter values M ¼ 10 kg; K ¼
1000 N=m; V ¼ 1 m=s; ms ¼ 1=2; and mk ¼ 1=4: This example is now used to compare the three
approximate solutions of Section 3 with the known exact solution.

Fig. 3 illustrates the computed approximate acceleration of the particle as a function of time
(normalized with respect to the period T) using traditional harmonic balance. The approximate
solution for N ¼ 40 (dashed curve) shows the expected oscillatory behavior (Gibbs phenomenon)
near the discontinuity and converges to the arithmetic mean of the values on either side of the
discontinuity as required. Hence, the series expansion converges to the exact solution (solid curve)
in the mean square sense (L2 norm).

The slow convergence of the classical harmonic balance method implied by the results of Fig. 3
is clearly observable in Fig. 4. This figure illustrates the estimated period T of the periodic motion
using the classical harmonic balance method (}), that method augmented by one C1 function
(&), and the new C1 series (3). The classical harmonic balance series exhibits very slow
convergence. The addition of a single C1 function dramatically improves the convergence rate.
The expansion in purely C1 functions ultimately leads to even swifter convergence beyond N ¼ 3:
Moreover, the estimated period using the new C1 series exhibits monotonic convergence beyond
N ¼ 3 where it also remains within 70:1% of the exact period.
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Fig. 5 compares the computed acceleration response over one period for a comparable size
series for all three methods (N ¼ 3) together with the exact acceleration (solid curve). The classical
harmonic balance solution (dash–dot curve) is relatively poor compared to the other
approximations. Note that the Gibbs phenomenon present in the classical harmonic balance
solution is entirely eliminated upon the addition of a single C1 term (dashed curve) (as well as in
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Fig. 3. Particle acceleration computed using the classical harmonic balance method (- - -) over one period (N ¼ 40) and
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the new C1 series (dotted curve)). Moreover, both of these two latter series converge pointwise to
the exact acceleration, whereas the classical harmonic balance solution converges only in the mean
square sense.

The results of Fig. 5 (N ¼ 3) are now extended in Fig. 6, where the L2 norm of the acceleration
error is reported as a function of expansion size. Here, the L2 norm of a function f (over one
period),

8f 8 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ T

0

f 2ðtÞ dt

s
; ð21Þ
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Fig. 6. L2 norm of acceleration error as a function of expansion size: classical harmonic balance (}), harmonic balance

augmented by one C1 function (&), and new C1 series (3).
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is used to compute the norm of the difference between an approximate solution and the exact
solution for the acceleration, as defined by

e ¼
8 .xexact � .xapprox:8

8 .xexact8
: ð22Þ

This error measure for the acceleration using the classical harmonic balance (}) slowly decreases
monotonically with increasing expansion size. However, the error for the classical harmonic
balance augmented with one C1 term (&) decreases at a significantly greater rate (note log scale)
although not monotonically. It is speculated that the non-monotonic behavior may occur because
g1ðtÞ may not be linearly independent of the Fourier series components of the expansion. For the
new C1 series (3), convergence is even swifter and resembles a stair-step pattern. This is expected
since the even-order terms (N ¼ 2; 4;y) are not expected to contribute to the antisymmetric
acceleration response. Moreover, the new C1 series produces the swiftest convergence rate since all
terms in the series are in the same function space as the exact solution.

5. Summary and conclusion

This paper presents generalizations of the harmonic balance/Galerkin method that
substantially accelerate convergence relative to traditional harmonic balance for non-smooth
dynamical systems. The methods follow from noting that the exact solution xðtÞ of a non-smooth
dynamical system possesses bounded continuity, xðtÞACn; where n is finite and can be deduced by
inspection of the equation(s) of motion. Use of one or more expansion functions that lie in the
function space Cn leads to the accelerated convergence observed herein. Moreover, the series
convergence mode changes from that of mean square convergence to pointwise convergence for
the discontinuous variable (for instance, the discontinuous acceleration in the case of a system
with dry friction), and the Gibbs phenomenon is eliminated. Such methods hold promise for
finding approximate periodic solutions of systems with dry-friction, impact, clearance, backlash,
and other causes of non-smooth dynamic response.
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